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First-order depinning transition of a driven interface in disordered media
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We introduce a simple growth model which exhibits a first-order pinning-depinning~PD! transition in

disordered media. In our model, a first-order PD transition is triggered by the local inertia forceFl5pLv̄,

wherep denotes a constant between 0 and 1,L is the system size, andv̄ is the average velocity in a local
region of the growing interface. Ifp,pc , our model shows a continuous PD transition. However, ifp.pc ,
our model shows a first-order PD transition. We measure the critical exponents characterizing the dynamical
behavior of our model and explain how a first-order PD transition can occur ifp.pc . Besides the PD
transitions, our model exhibits another phase transition from a fluctuating to a nonfluctuating interface with a
constant velocity.
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Driven interfaces through disordered media~DIDM ! have
been a popular research topic for the last decade. Many s
ies about the DIDM have been done because they relat
various physical systems such as interface growth in por
media @1,2#, charge density waves under external fie
@3–5#, fluid imbibition in paper@6#, driven flux motion in
type-II superconductors@7,8#, etc. One of the interesting phe
nomena occurring in the DIDM is the existence of a contin
ous depinning transition from a pinned to a depinned s
according to the change of the external driving force. Ma
theoretical works about the DIDM have been focused
introducing stochastic models and continuum equati
showing a continuous depinning transition, and obtain
various critical exponents characterizing the continuous
pinning transition.

On the other hand, recently it has been reported via
periments@9–11# and theoretical studies@12,13# that a driven
interface in a system with strong disorder shows an inter
ing depinning transition, a first-order depinning transitio
which is different from the continuous depinning transiti
occurring in a system with weak disorder. One example
driven vortex arrays@10,11#. The current-driven vortex
shows interesting strongly history dependent behavior
most of the field and temperature region. The interfa
driven through strong disorder exhibits a spatially inhom
geneous plastic response without long-wavelength elastic
storing force, which happens in a system with weak disor
In this case, ordinary methods used to understand the cri
behavior of the driven interface in a system with weak d
order are known to be inadequate@14,15#. Recently Mar-
chetti, Middleton, and Prellberg~MMP! @14# succeeded in
designing a coarse-grained model~the MMP model! exhibit-
ing a history dependent depinning transition. The history
pendent depinning transition in the MMP model is trigger
by the effective driving forceF1pV, whereF andp are the
external driving force and a constant between 0 and 1,
spectively. HereV is the velocity of the driven interface.

History dependent depinning of an interface driv
through disordered media is an interesting phenomenon,
not much study about this phenomenon has been done
this paper, we introduce a simple growth model for t
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DIDM, which can exhibit a history dependent depinning b
havior. The main difference between our model and
MMP model is that the origin of history dependent depinni
is different. In the MMP model, history dependent depinni
originates from the global velocity of the growing interfac
but in our model, it does from an average velocity in a loc
region of the growing interface. The effective driving forc

in our model can be expressed byF1pLv̄, wherev̄ denotes
an average velocity in a local region of the growing inte
face, whereL is system size andp is a constant between 0
and 1. Our model shows two kinds of depinning transitio
If p,pc , our model shows a continuous depinning tran
tion, but if p.pc , our model shows a discontinuous depi
ning transition.

Recently, Schwarz and Fisher also studied critical beh
iors including a discontinuous depinning transition with
mean field ~an infinite range! model in disordered media
@15#. In that paper, they raised a question: what of the criti
behaviors persist in a finite dimensional model? Our mod
critical behaviors can be an answer to the question.

Our model is defined on a~111!-dimensional lattice with
periodic boundary conditions. The growth rule of our mod
is as follows~see Fig. 1!: ~i! We assign a random numbe
between 0 and 1 to each lattice site, where random num
represent impurities of the disordered media. A constant d
ing forceF is applied to the interface. Each site on the int
face can be occupied at each time step. If a vacant sitei is
occupied at timet, the local velocity of the interface at tha
site is defined byv i(t)51/L. If a vacant site is not occupied
then the local velocity of the interface is defined byv i(t)
50. If all the sites on the interface are occupied at timt
simultaneously, the global velocity of the interface,V(t)
5( i

Lv i(t), is 1. A vacant sitei on the interface is occupied a
time t if the value of the random number at that site
smaller than the sum of the driving forceF and pLv̄ i(t
21), where v̄ i(t21)5@v i 21(t21)1v i(t21)1v i 11(t
21)#/3. In our model, all vacant sites on the interface, whe
the value of the random number is smaller thanF1pLv̄ i(t
21), are occupied simultaneously by parallel updates. A
©2002 The American Physical Society02-1
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the growth of the interface, we impose the restricted so
on-solid~RSOS! condition,uhi2hi 61u<1, on all sites on the
interface. Herehi means the height of the interface at the s
i. The RSOS condition is fulfilled by an instantaneous a
lanche process after parallel updating.

When p is zero, the dynamics of our model can be w
described by the quenched Kardar-Parisi-Zhang~QKPZ!
equation@16,17#,

]h~x,t !

]t
5n“2h1

l

2
~“h!21F1h~x,h!, ~1!

whereh(x,t) is the height of the interface at positionx and
time t. F is an external driving force andh is a quenched
noise with^h(x,h)&50 and^h(x,h)h(x8,h8)&52D d d8(x
2x8)d(h2h8). Hered8 denotes substrate dimension.

Generally the motion of the interface driven through d
ordered media by an external driving force is determined
the interplay between the resistance force induced by
impurities in the disordered media and the driving force. T
interface is pinned if the driving forceF is smaller than the
resistance force. If the driving force is larger than the res
tance force, however, the driven interface moves with a c
stant velocity. Therefore, there exists a threshold of the d

FIG. 1. Schematic representations of the stochastic growth
of our model. In each figure, the numbers on top denote the ef
tive driving forces. The numbers at the interface are random n
bers which represent impurities in the disordered media. In
middle and bottom figures, the effective driving force is changed
those sites, where growth of the interface occurs. After the gro
of the interface, the avalanche process occurs to satisfy the R
condition.
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ing force, Fc , above which the interface moves with
constant velocity. This phenomenon is called the pinnin
depinning~PD! transition. Most of PD transitions occurrin
in disordered media are a continuous phase transition
case of a continuous PD transition, the velocity of the int
face followsv;(F2Fc)

u close to the critical point, whereu
is called the velocity exponent. The driven interface form
by the QKPZ equation shows a continuous PD transition
the value of the exponentu is 0.636@18#.

We carried out the computer simulation of our model f
system sizeL510 000 by changing the driving forceF andp
from 0 to 1, respectively. The velocity versus the drivin
force is plotted in Fig. 2.

It is well known that our model belongs to the QKP
universality class atp50. We found that our model shows
continuous PD transition atp50 as we expected. By fitting
the velocity data above the threshold tov;(F2Fc)

u, we
obtained the critical driving forceFc50.463(2) and the ve-
locity exponentu50.63(1) at p50. Near the depinning
threshold, the dynamics of the growing interface show
nontrivial scaling behavior in global interface width
W(L,t)5^L2d8( i@hi(t)2h̄(t)#2&1/2. The interface width
scales as

W~L,t !;H tz/z if t!Lz,

Lz if t@Lz.
~2!

Here, h̄ denotes the mean height.z and z are called the
roughness and the dynamic exponent. The roughness e
nent can also be obtained from the height-height correla
function C(x)5^(hi 1x2hi)

2&1/2;xz, which should be mea-
sured after the growing interface reaches a steady state@17#.
At the depinning thresholdFc50.463(2) in case ofp50,
we measured the height-height correlation function after
fluctuating interface reached a steady state. The obta
roughness exponent isz50.63(1). We also obtained the
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FIG. 2. Plot of the velocity of the interfaceV versus the driving
forceF for different values ofp from 0.0~the right! to 1.0~the left!.
Black ~or open! dots denote velocities obtained from the simulati
by changingF from 0 to 1~or from 1 to 0! continuously. Black and
open dots split in two forp.pc@50.549(2)#. Inset: the figure col-
lapsing whole data. The line is forV;(F2Fc)

0.63.
2-2
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growth exponent,b(5z/z)50.63(1), by measuring the glo-
bal interface width. The obtained roughness and growth
ponents are in good agreement with the value, 0.633, belo
ing to the QKPZ universality class@18#.

Our model shows a continuous PD transition untilp is
changed from 0 topc@50.549(2)# ~see Fig. 2!. We found
the critical driving forceFc(p) for p50.1, 0.2, 0.3, 0.4, 0.5
and 0.549. After that, we measured the velocity, growth, a
roughness exponents at the depinning transition point.
found that the critical driving forceFc decreases linearly asp
increases,

Fc~p!50.46320.843p. ~3!

We derived Eq.~3! from the simulation data~see Fig. 3!.
An interesting fact in Eq.~3! is thatFc(p)50 at pc50.549.
In our model, the effective driving force isFeff5F1Fl ,
where the local inertia force is given byFl5pLv̄ i(t21)
5pL(v i 211v i1v i 11)/3. Herev i(t21) is 1/L if the sitei is
occupied at timet21, otherwisev i(t21) is 0. If we denote
the maximum resistance force hindering the growth of
interface byFr , the value ofFr is the same for allp as that
of Fc(p50)50.463(2). If p.0, the critical forceFc(p) for
the depinning of the interface can be written as

Fc~p!5Fr2pLv̄, ~4!

where v̄(t21)5(v i 211v i1v i 11)/3 if Fr takes place ata
site i. Hence, the critical forceFc(p) decreases linearly asp
increases becauseL v̄ has a constant value at the critic
point regardless of the value ofp. We know that the value o
L v̄ from the simulation is about 0.843 for allp.

We found that the values of the critical exponents such
roughness, growth, and velocity exponent do not depend
the value ofp until p approachespc@50.549(2)# from 0. We
also found that our model shows a continuous depinn

FIG. 3. Plot of the driving forceF versusp. Each black dot
denotes the critical force for a depinning transition for a givenp.
Each open dot denotes the critical force for a transition from
fluctuating to a nonfluctuating interface withV51 for a givenp.
The dotted line indicates that a first-order transition occurs ac
the line.
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transition untilp approachespc . However, whenp.pc , the
value of the interface velocity jumps abruptly from 0 to no
zero as soon asF becomes nonzero. Hence, the depinni
transition is interestingly a first-order transition. One can s
easily why the first-order transition occurs in our model. It
because the local inertia forceFl is always larger than the
critical resistance forceFr if F.0 andp.pc . In order to
check whether the transition is really a first-order depinn
transition, we measured the velocity of the growing interfa
by decreasing the driving force from 1 continuously until t
velocity of the interface becomes zero~see the open dots in
Fig. 2!. In the growth rule of our model, the decrease of t
interface height is not allowed. Therefore, the velocity of t
interface is zero if the effective driving force is smaller th
the resistance forceFc(0). The velocity of the interface is
always zero for the external driving forceF(<0) regardless
of the value ofp if we measure the velocity by increasing th
driving force from a certain negative value to 0. It is becau
the effective driving force is the same as the external driv
force. However, if we measure the velocity of the interfa
by decreasing the driving force from 1 to a certain negat
value, the velocity has a nonzero constant value even aF
50 for p.pc because of the inertia effect. In our model, t
effective driving force is determined by the former growth
the interface as well as the external driving force. Therefo
even whenF,0, the effective driving force can be large
than Fc(0), i.e., the value of the velocity is nonzero. W
found that the velocity of the interface splits in two@zero
~black dot! and constant~open dot! in Fig. 2# at F50 for
p.pc , but any split behavior of the velocity does not occ
for p,pc . Therefore, we believe that the depinning tran
tion is a first-order transition. Moreover, the transition is
history dependent one. We also found that the value of
velocity exponent is alwaysu50.63(1) by collapsing all
data for p50.0,0.2, . . . ,1.0, where we used the data o
tained by decreasingF from 1 to20.4 continuously~see the
inset of Fig. 2!.

Besides PD transitions, our model shows another ph
transition from a fluctuating interface with 0,V,1 to a
nonfluctuating interface withV51 ~see Fig. 3!. This transi-
tion occurs when the effective driving force becomes lar
than 1. We can calculate exactly the value of the criti
driving force, which invokes this transition. IfV is 1, thenv i
is 1/L for each sitei on the interface. Therefore, one ca
easily find that the interface grows withV51 if F512p,
i.e., Feff5F1Fl5(12p)1p51 at the critical point. From
the simulations, we find the same result~see Fig. 3!. We also
measured the roughness exponent by changingp from pc to
1 at the depinning transition point. We found that the va
of the roughness exponent decreases from 0.63 to abou
suddenly as soon asp becomes larger thanpc . This behavior
can be explained well from the dynamical behavior of t
QKPZ equation. In the limitF@Fc , the dynamical behavior
of the QKPZ equation is well known to be the same as t
of the thermal KPZ equation withz51/2:

]h~x,t !

]t
5n“2h1

l

2
~“h!21h~x,t !, ~5!
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where ^h(x,t)&50 and ^h(x,t)h(x8,t8)&52Dd d8(x
2x8)d (t2t8). Our model withp.pc shows the same dy
namical behavior as that of the QKPZ equation withF@Fc
at the critical pointFc(p).

Although the values of the critical exponents of our mod
for p.pc can be well explained by the QKPZ equation, t
growth process of the interface in the early time limit at t
critical point is very different from that of the QKPZ equa
tion ~see Fig. 4!. In the QKPZ equation, the growth of th
interface takes place simultaneously almost in all regions
the interface, even in the early time limit. Our model al
shows the same behavior whenp,pc , but it shows a very
different growth behavior in the early time limit whenp
>pc . Whenp>pc , initial growth occur only in a few sites
on the interface. However, the former growth induces furt
growth of the interface whenp.pc because of the feedbac

FIG. 4. Plots ofh(x) versusx for p50.4 ~a! andp50.7 ~b!. In
the figures, black dots denote the sites which have the local in
force. Some black dots in~a! scattered randomly on the interfac
but many black dots spread almost on the whole interface in~b!.
The interface becomes smoother as time goes on in~b!. The figure
in the inset shows the interface which reaches a steady state. I~a!
and ~b!, the lines are drawn for the same time intervals. The in
face grows faster in~b! than in ~a!.
b,

.

ev
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from the effective driving force. The growth area, whe
growth occurs each time, spreads over the whole interf
continuously as time goes on because of the RSOS co
tion. Then the number of sites, which have the inertia for
also spreads over the whole interface continuously. The m
phology of the interface is very rough until the inertia effe
spreads over the whole interface. But the interface start
become smoother after the sites with the inertia force spr
over the whole interface. In our model, the RSOS condit
makes the region in the valley of the interface grow fas
than that in the top of the interface. In the long-time lim
the interface reaches a steady state. After that, the gro
process of the interface is the same as that of the QK
equation with a large driving force.

In conclusion, we have introduced a simple growth mo
for a driven interface in disordered media, showing a fir
order PD transition. The first-order depinning transition
our model is triggered by the local inertia forceFl5pLv̄.
Our model shows a continuous PD transition ifp,pc . How-
ever, our model shows a first-order PD transition ifp.pc .
The first-order PD transition is history dependent. We m
sured the critical exponents characterizing the PD transitio
We found that the value of the velocity exponent is the sa
as u50.63(1) for all values ofp between 0 and 1. The
roughness exponent isz50.63(1) forp,pc but the value of
z becomes about 0.5 forp.pc . We explained how the first-
order PD can occur in our model. In addition to the P
transitions, our model shows another phase transition fro
fluctuating to a nonfluctuating interface withV51. We ex-
plained how this transition occurs in our model.
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